Received: June 6, 1978

PRELIMINARY NOTE

Thermolysis of N,4-Dichloroperfluorocyclohexa-2,5-dienylideneamine

B. AL-SALEH, R. E. BANKS*, M. G. BARLOW, and J. C. HORNBY

Chemistry Department, The University of Manchester Institute of Science & Technology, Manchester M60 1QD (Great Britain)

Re-consideration of the possibility that NN-dichloroperfluoroaniline might be a useful source of perfluorophenylnitrene [1] led to the work described below which both possesses inherent mechanistic interest and points to a new strategy for the synthesis of polyfluorinated N-heteroaromatics.

$$F \xrightarrow{\text{r-Buocl}} F \xrightarrow{\text{ccl}_{4}, -15^{\circ}\text{c}} F \xrightarrow{\text{r}} F \xrightarrow{\text{r}}$$

SCHEME 1

† It is not necessary to isolate the NN-dichloroperfluoroaniline [2].

N,4-Dichloroperfluorocyclohexa-2,5-dienylideneamine (I), which is quite easy to prepare (see Scheme 1) [1], resists thermal decomposition when subjected to flow pyrolysis at \underline{ca} . 1 mmHg pressure in silica (100 x 1 cm tube, heated length 50 cm) at 300 °C. At 550 °C, however, passage of 10.0 g of (I) through the tube during 2.5 h effects its complete conversion [3] into an oil (6.5 g) coloured orange-red by perfluoroazobenzene plus a gas containing chlorine. In addition to the

^{*} To whom enquiries should be addressed.

azo-compound, the oil contains at least eleven components (by g.l.c. analysis) only eight (II-IX) of which have been identified owing to isolation problems. From the nature of these products, we conjecture that some of the conversions involved are those shown in Scheme 2. In

$$\frac{3_{F}}{4_{F}}$$
 $\frac{5_{F_{2}}}{111}$
 $\frac{5}{111}$

λmax. 4.60 (CN str), 5.70 (CF=CF str), 5.99μm (OF=CCN str); * δ₂ 28.0, 5 δ₃ 76.3, 5 δ₄ 73.0, 5 δ₅ 54.6 p.p.m., 5 Δ₂₃ 9.0, 5 Δ₂₄ 2.0, 5 Δ₂₅ 8.3, 5 Δ₃₄ 14.2, 5 Δ₃₅ 5.5, 5 Δ₄₅ 8.6 Hz; m /e 181 (n *, 100%).

 $oldsymbol{\delta}_3$ 63.1, $oldsymbol{\delta}_4$ 59.8, $oldsymbol{\delta}_5$ 82.3, $oldsymbol{\delta}_6$ 7.7 p.p.m., \underline{J}_{34} 17.6, \underline{J}_{35} 4.2, \underline{J}_{36} 25.6, \underline{J}_{45} 17.0, \underline{J}_{46} 15.7, \underline{J}_{56} 22.2 Hz [5].

 δ_{CFCl} -73.8, $\delta_{2,6}$ 75.4, $\delta_{3,5}$ 87.1, δ_{4} 83.8 p.p.m. [6]; $\underline{m}/\underline{e}$ 247 ($c_{7}F_{6}N^{35}cl^{\ddagger}$, 98), 212 ($c_{7}F_{6}N^{\ddagger}$, 100%).

(IA)

 δ_1 63.2, δ_2 96.1, δ_3 68.5, δ_4 8.4 p.p.m., CN \underline{J}_{12} 10.6, \underline{J}_{13} 3.2, \underline{J}_{14} 13.6, \underline{J}_{23} 38.4, \underline{J}_{24} 3.4, \underline{J}_{34} 11.2 Hz.

Known compounds: hexafluorobenzene (VII), chloropentafluorobenzene (VIII), and pentafluoropyridine (IX).

^{*}Positive values of chemical shifts are to high field of trifluoro-acetic acid, and magnitudes of coupling constants are quoted.

SCHEME 2

support of the suggestion that perfluoroazobenzene functions as a source of chloropentafluorobenzene (the major product), co-pyrolysis of the azo-compound with chlorine at $550\,^{\circ}$ C/1 mmHg has been shown to produce the perhalogenobenzene in at least 50% yield. Further information

is being sought [4] through study of (\underline{i}) the pyrolysis of 2-chlorotetra-fluoropyridine, $(\underline{i}\underline{i})$ thermolysis of \underline{N} , 4-dichloroperfluorocyclohexa-2,5-dienylideneamine over copper, and $(\underline{i}\underline{i}\underline{i})$ thermal conversions of compounds of type (X) and (XI).

REFERENCES

- 1 R. E. Banks and T. J. Noakes, J.C.S. Perkin Trans. I, (1976) 143.
- 2 Dropwise addition of perfluoroaniline (40.0 g, 219 mmol) in AnalaR carbon tetrachloride (300 cm³) to a cold (-23 °C), stirred solution of t-butyl hypochlorite (48.0 g, 442 mmol) in the same solvent (700 cm³) followed, after 1 h, by the addition of a small crystal of iodine to the mixture provides N,4-dichloroperfluorocyclohexa-2,5-dienylidene amine in 78% yield (43.0 g, 171 mmol).
- 3 Only 80% conversion was achieved at 450 °C.
- 4 B. Al-Saleh, R. E. Banks, M. G. Barlow, G. R. Lomax, and M. Mamaghani, work in progress.
- 5 <u>Cf.</u> R. D. Chambers, D. Close, W. K. R. Musgrave, J. S. Waterhouse, and D. L. H. Williams, J.C.S. Perkin Trans. II, (1977) 1774.
- 6 Typical C₆F₅ absorptions; <u>cf</u>. the chemical shifts for C₆F₅N=CCl₂: T. I. Savchenko, T. D. Petrova, V. E. Platonov, and G. G. Jakobson, J. Fluorine Chem., <u>9</u> (1977) 505.
- 7 Cf. the parameters for perfluoro-(2-methylpyridine): J. Lee and K. G. Orrell, J. Chem. Soc., (1965) 582.
- 8 For a recent review of interconversions of nitrenes and carbenes, see C. Wentrup, Top. Curr. Chem., 62 (1976) 173.